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Abstract
We discuss the dynamics of classical Dicke-type models, aiming to clarify
the mechanisms by which coherent states could develop in potentially non-
equilibrium systems such as semiconductor microcavities. We present
simulations of an undamped model which show spontaneous coherent states
with persistent oscillations in the magnitude of the order parameter. These
states are generalizations of superradiant ringing to the case of inhomogeneous
broadening. They correspond to the persistent gap oscillations proposed in
fermionic atomic condensates, and arise from a variety of initial conditions.
We show that introducing randomness into the couplings can suppress the
oscillations, leading to a limiting dynamics with a time-independent order
parameter. This demonstrates that non-equilibrium generalizations of polariton
condensates can be created even without dissipation. We explain the dynamical
origins of the coherence in terms of instabilities of the normal state, and consider
how it can additionally develop through scattering and dissipation.

1. Introduction

Cavity polaritons [1–5] are the quanta of the electromagnetic field in a semiconductor
microcavity. Since they are part photon, cavity polaritons are bosons. Thus there is the
possibility of forming a Bose condensate of polaritons, in which an incoherent population of
polaritons becomes coherent due to the combined effects of bosonic statistics and interactions.
The last few years have seen a steady accumulation of evidence for such physics. Initial
observations of a threshold [6, 7] in the intensity of the emitted light as a function of
pumping power have been supplemented by demonstrations of both temporal [8] and spatial [9]
coherence in the emission. Evidence that the phenomenon is not conventional lasing includes
the persistence of polaritonic features in the spectrum above threshold: a polaritonic spectrum
arises from a coherent polarization in the gain medium, while such polarization is negligible in
conventional laser theory.

One route to developing theories of polariton condensation is to begin with the quasi-
equilibrium limit of a population of polaritons. The established techniques of many-particle
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physics can then be applied to model microcavities, and theories developed which allow
for issues such as the internal structure of the polaritons, disorder acting on the excitons,
and the many-body nature of Bose condensation. This approach has now established phase
diagrams and observable properties for polariton condensation in a range of increasingly
realistic models [10–20].

The problem with the equilibrium theories is linking them to the experiments, which may
not be in thermal equilibrium. In principle they are directly applicable if the polariton lifetime
is long compared with the thermalization time. Unfortunately, while the polariton lifetime
is easily established to be of the order of picoseconds, it is difficult to get a handle on the
thermalization time. In practice the typical situation appears to be that the system does not
thermalize below the nonlinear threshold, but can do above it [21]. Thus while equilibrium
theories are apparently sometimes directly applicable to the condensed state, further work is
needed to understand the threshold itself, and the apparent equilibration below it.

Polariton condensation experiments are one topical motivation for reconsidering a
fundamental issue in the physics of coherent many-particle states: the origins of the coherence.
Since in equilibrium the coherent state is selected because it has a lower energy than
the incoherent state, one might expect the origins of coherence to be in dissipation and
thermalization. Yet coherence can develop in the absence of dissipation (e.g. superradiance) or
in dissipative systems that are not in thermal equilibrium (e.g. lasing and the non-equilibrium
condensation proposed in [22]).

There are many areas beyond polariton condensation where the origins of coherence are
relevant. In microcavities one has access to a range of non-equilibrium states, created for
example by coherent pumping [23], and hence a laboratory for widely exploring mechanisms
which create and preserve coherence. In atomic Bose gases the development of condensates
has been studied both theoretically and experimentally [24–26], and there has been much recent
interest in non-adiabatic phenomena involving coherent states of atomic Fermi gases [27–29].

In this paper we explore the origins of coherence by discussing the dynamics of classical
Dicke-type models. We first consider an undamped model, which we present in section 2 along
with a brief review of some analytical results on its dynamics. In section 3 we then present and
discuss some numerical simulations showing that some of the coherent steady states are reached
from some initial conditions, even in the absence of dissipation. In section 4 we explain, in
terms of the dynamical stability of the incoherent states, why this occurs. In a special case of
the model the results can be further understood using exact solutions, as we discuss in section 5.
In section 6 we discuss a phenomenological approach to adding damping to the dynamics,
and present numerical results showing the approach to an equilibrium condensate. Finally,
in section 7 we propose several scenarios for how coherence could develop in a polariton
condensation experiment, and summarize our conclusions.

2. Background and basic model

The basic model we consider here directly describes excitons strongly localized on disorder in
a three-dimensional cavity. It has the Hamiltonian

H = ωcψ
†ψ +

∑

i

[
Ei S

z
i + gi√

N

(
S+

i ψ + ψ† S−
i

)]
. (1)

ψ† is the creation operator for a cavity photon, with energy ωc. The dielectric is modelled as a
set of N two-level systems, with the i th two-level system described by the spin-half operators
�Si . The eigenstates of Sz

i correspond to the presence or absence of an excitation on site i .
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The form of (1) is a generalization of the well-known Dicke model to include a distribution
of exciton energies (i.e. inhomogeneous broadening) and coupling strengths. It is one
of the central models of quantum optics, describing for example lasing [30], equilibrium
superradiance [31] and dynamical superradiance [32]. It can be viewed as a generalization
of the BCS Hamiltonian to the strong-coupling regime, as is apparent on rewriting the spin
operators in terms of two species of fermions. It was applied to polariton condensation by
Eastham and Littlewood [10–12], who considered its quasi-equilibrium thermodynamics at
fixed excitation number

L = ψ†ψ +
∑

i

Sz
i ; (2)

note this is conserved by (1). The resulting polariton condensate can be viewed as
a generalization of the BCS state to include coherent photons. Later work on the
equilibrium polariton condensate in models of the basic form (1) includes generalizations
to include propagating photons [16, 17], decoherence [14] and more realistic approaches to
disorder [15, 19]. The same theoretical framework has also been applied to condensation in
atomic gases of fermions [33, 34].

To study the dynamics of the model (1) we begin from the Heisenberg equations of motion
for the operators. However, we shall not consider the full quantum dynamics described by these
equations. Instead we consider the simpler problem obtained by replacing the operators in the
equations of motion with classical variables. This is equivalent to taking the expectations of
the equations of motion and approximating the expectation values of products as products of
expectation values. Thus we consider a mean-field dynamics for the quantum model. Since
mean-field theory is exact for the thermodynamics in the limit N → ∞ we expect it to account
for many features of the dynamics when N is large.

Thus the classical equations of motion we consider are

iψ̇ = ωcψ + 1

2
√

N

∑

i

giσ
−
i , (3a)

�̇σi = �σi × �Bi , (3b)
�Bi = (−2gi Re(ψ)/

√
N , 2gi Im(ψ)/

√
N ,−Ei ), (3c)

where �σi/2 = �Si and σ−
i = σ x

i − iσ y
i .

We shall describe the model as having excitonic coherence if the phases of the different
σ−

i are correlated. Equivalently, the xy components of the total spin vector, �σT = ∑
i �σi , are

of order N . This leads, according to (3a), to a state with ψ ∼ √
N .

2.1. Steady-state solutions

In previous work [35] we identified two classes of steady-state solutions to (3a)–(3c) when
N → ∞. The simplest class consists of solutions in which there is no excitonic coherence and
a cavity field of order N0. In this case as N → ∞ the spin i freely precesses around the z-axis
at its natural frequency Ei , so the excitons remain incoherent and the solution is self-consistent.
These solutions are generalizations of the normal state in the equilibrium theory. When N is
finite but large there is a subset of such solutions which remain incoherent, including at least
those where the cavity field and excitonic polarization are exactly zero.

The second class consists of synchronized steady states which generalize the condensed
solutions of the equilibrium theory. In these states there is an O(

√
N ) component to

ψ oscillating at a single frequency, ψ ∼ λ
√

Ne−iμt . In a frame rotating at this
frequency the spin dynamics for large N is just free precession about a static effective field
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�̃Bi = (−2gi Re(λ), 2gi Im(λ),−(Ei − μ)). Incorporating this dynamics in (3a), we find that
the leading-order terms are satisfied if

(ωc − μ)λ = λ

N

∑

i

g2
i σ

z′
i (0)√

(Ei − μ)2 + 4g2
i |λ|2

. (4)

Here σ z′
i (0) denotes the initial component of the i th spin along its effective field �̃Bi . If every

spin lay parallel to its effective field �̃Bi then (4) would be the gap equation for the polariton
condensate at T = 0, but we see that there are many more self-consistent solutions with non-
equilibrium distributions of σ z′

i (0).
We note that the self-consistency argument admits the possibility of steady states where

the spins do not lie along their effective fields, because the dominant terms in the sum on the
right of (3a) come from components of σ− which oscillate at frequency μ. If the spins do

not lie along �̃Bi then there are additional components at frequencies μ ± | �̃Bi |, but since these
frequencies differ for each spin they give terms of O(1) in (3a). Thus these components are
irrelevant when N → ∞. For N finite but large they lead to noise sources which drive the O(1)
component of ψ , and so would not change the macroscopic behaviour so long as the states are
dynamically stable.

2.2. Exact solutions

In recent work [36], the non-equilibrium gap equation (4) is derived from an exact solution to
the model (3a)–(3c). This solution applies to the special case gi = g in which the model is
integrable. A similar equation is also given for the steady states of the BCS model in [37].
The exact solutions go well beyond the arguments above, and show that there are many further
classes of solutions in which |ψ| oscillates with a small number of frequencies. The next
simplest solutions correspond to an ansatz proposed by Barankov and Levitov [38], and have
oscillations of the order parameter described by elliptic functions. An approach for determining
the type of solution which evolves from a given initial condition is discussed in [39], and can
be applied to the Dicke model using the Lax vector given in [36].

3. Numerical results

Having seen that the model (3a)–(3c) has coherent solutions, we now consider whether the
coherence can develop dynamically when N is finite but large. This question can, for the
integrable model gi = g, be analysed entirely using the exact solutions. We shall approach
it instead through numerical solutions to the equations of motion, allowing us to go beyond
the exactly solved model, and return to discuss how the results link to the exact solution in
section 5.

We first consider the model when gi = g, and choose our units of energy such that g = 2,
and the zero of energy such that ωc = 0. We take the energies to be drawn from a Gaussian of
standard deviation σ = 0.3 and mean zero, so the photons are resonant with the centre of the
inhomogeneously broadened exciton line.

The dynamics in general depends on the initial conditions. We consider initial conditions
in which there is no correlation between the spin and energy on each site. To construct an
initial condition with negligible classical coherence we take the spins to make angles to the
z-axis chosen from a uniform distribution over [θ1, θ2], and to have angles to the x-axis drawn
from a uniform distribution over [0, 2π]. Since we are looking for symmetry-broken solutions
we also include a small initial seed for the cavity field.
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Figure 1. Locus of the total spin vector to t = 100 (left panel) and cavity mode amplitude (right
panel) for the classical Dicke model with gi = g = 2 and N = 500, starting in an unphased inverted
initial condition. ωc = 0 and the energies Ei are drawn from a Gaussian with mean 0 and standard
deviation 0.3. The initial state has a small photon field and spins whose angles to the z(x)-axis are
drawn uniformly from [0, π ]([0, 2π ]).

For this type of initial condition our simulations of the dynamics do not develop coherent
photons unless the average σ z

i (0) exceeds a positive threshold. An example of the behaviour
when it does is shown in figure 1, for 500 spins with θ1 = 0 and θ2 = π/2. The left panel
shows the locus of the tip of the total spin vector �σT /N up to t = 100. The right panel shows
the associated field amplitude |ψ|. The behaviour contrasts with that obtained in a simulation
starting from non-inverted initial conditions, σ z

T (0)/N < 0, and shown in the left panel of
figure 4. In this case the locus becomes a point as N → ∞, and the photon field remains of
O(1).

As can be seen from figure 1, there are mechanisms in the Dicke model that can generate
coherence from an incoherent state, even without dissipation. However, for this class of
initial conditions they are only effective in inverted states, whereas equilibrium condensation
does not require inversion. A more immediately obvious relation is to strong-coupling
superradiant dynamics, demonstrated experimentally in [40]. This phenomenon can be treated
by considering the classical Dicke model with Ei = E and gi = g, so that (3a)–(3c) reduce
to equations for ψ and �σT . The dynamics of �σT can then be shown to be that of a rigid
pendulum [41]. Since the length of �σT is conserved when Ei = E the excitonic system must
become coherent if the pendulum swings towards the equator. The ‘gravity’ on this pendulum
acts down in figure 1, so that coherence increases only from inverted states. This asymmetry in
the dynamics is ultimately due to the rotating-wave approximation made in (1), which defines
directions of energy flow between the cavity mode and exciton.

In the absence of a field the polarization of an initially coherent state undergoes free
induction decay, as the different two-level systems go out of phase due to the inhomogeneous
broadening. An interesting feature of figure 1 is that the coherence does not appear to decay
even in the presence of an inhomogeneous broadening. Such undamped dynamics for the cavity
mode is reminiscent of self-induced transparency [42], in which soliton-like pulses propagate
unattenuated in an inhomogeneously broadened medium.

It becomes possible to generate spontaneous coherence in the Hamiltonian dynamics
without inversion if one considers initial conditions in which the spins are correlated with
energy. In particular, Barankov and Levitov recently presented an ansatz [38] which solves
the dynamics starting from a Fermi sea. In these solutions there is a coherent cavity field
whose amplitude undergoes undamped oscillations like those in figure 1. As we will discuss
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Figure 2. Destruction of the gap oscillations by a distribution of g. Left panel: parameters of
figure 1 except that N = 2000 and g is drawn from a Gaussian of mean 2 and standard deviation
0.6. Right panel: same parameters starting from a Fermi sea with a Fermi energy 0.05 below the
centre of the inhomogeneously broadened exciton line.

in section 5, the coherent dynamics we find in simulations corresponds to the solution given
in [38], although our initial conditions are not considered there.

Although the oscillations are not suppressed by randomness in Ei , it appears that they
can be suppressed by randomness in the coupling constants gi , which exists in a disordered
semiconductor [19]. The left panel of figure 2 shows the dynamics in the Bloch sphere for
the same parameters as figure 1, but with the coupling constants now drawn from a Gaussian
with mean 2 and standard deviation 0.6. The right panel shows the results for the same
parameters but starting from a Fermi sea with the Fermi edge at an energy 0.05 below the
middle of the band; without the randomness of g this initial condition results in persistent gap
oscillations. In both cases we see that the oscillations of the macroscopic electromagnetic field,
which according to (2) correspond to oscillations in σ z

T , disappear at late times. The dynamics
reaches a steady-state condensate with a uniform field, corresponding to the self-consistency
condition (4). Starting from an inverted, uncorrelated state the final solution appears to be the
trivial one in which the locking frequency μ = ωc and there is no coherent polarization: the
two-level systems are in a dephased state, which has decoupled from a residual cavity field
developed during the early stages of the dynamics. Starting from a Fermi sea, however, we
see that the late-time attractor of the dynamics is a circle: it has reached non-trivial locked
states in which the locking frequency differs from ωc and there is therefore a coherent excitonic
polarization.

4. Linear stability analysis

A simple way to understand why either inversion or a Fermi sea allows coherence to develop is
to consider a linear stability analysis of the incoherent state. The action for fluctuations around
the incoherent thermal equilibrium state is equation (23) in [11], so the real eigenfrequencies λ
are the solutions to

ωc − λ− 1

N

∑

i

g2
i tanh(β Ẽi/2)

Ei − λ
= 0, (5)

where Ẽi is Ei measured from the chemical potential for polaritons. More generally one
can linearize the zero-temperature dynamics about an arbitrary normal state [38, 43], which
corresponds to replacing the thermal equilibrium σ z

i = − tanh(β Ẽi/2) in (5) with the general
σ z

i (0) of the non-equilibrium state:
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 λ  λ EF
 λ

Figure 3. Illustration of the left (dot–dashed) and right (solid) sides of equation (6), determining the
eigenfrequencies λ of the normal state. Left panel: stable incoherent state with σ z

i independent of
energy and less than zero. Middle panel: unstable incoherent state with σ z

i independent of energy
and greater than zero. Right panel: unstable Fermi sea, σ z

i = +(−)1 for Ei < (>)EF.

Figure 4. Locus of the total spin vector up to t = 100 starting from an initial condition where the
spins have angles to the x-axis chosen uniformly from [0, 2π ], and to the z-axis from [π, 2π ]. Left
panel: undamped model. Right panel: model with phenomenological damping γ = 1. N = 2000,
Ei from a Gaussian with mean 1 and standard deviation 0.5, gi = g = 2, ωc = 1.

ωc − λ = − 1

N

∑

i

g2
i σ

z
i (0)

Ei − λ
. (6)

In passing we note that the analogous generalization of the thermodynamic action for
fluctuations about the condensate, equation (22) of [11], gives the eigenspectrum for the
coherent steady states with a uniform gap and every spin parallel or antiparallel to its effective
field, but more generally there are additional terms generated by the components of the spins
transverse to the effective fields.

A dynamical instability is indicated by the appearance of a complex root in (6). In figure 3
we plot the left and right sides of (6) for real λ, a small number N = 6 of two-level systems,
and three types of initial states. For an uncorrelated non-inverted state (left panel) there are
N + 1 real roots which generalize the inhomogeneously broadened polariton spectrum to the
non-equilibrium states. When g becomes large compared with the bandwidth the two poles
outside the band correspond to the usual upper and lower polariton, with a band of N − 1
almost excitonic states between them. The instability of an uncorrelated inverted state is shown
in the middle panel. We see that the two ‘polariton’ roots can become complex, indicating the
superradiant instability.

7



J. Phys.: Condens. Matter 19 (2007) 295210 P R Eastham

For completeness we illustrate the instability of a Fermi sea in the right panel. The sign
change in σ z

i (0) across the Fermi energy introduces a turning point in the right-hand side of (6).
At T = 0 there can be a stable Fermi sea in the finite system, which has two ‘excitonic’ roots
near the Fermi edge. These roots become complex at the instability, which can be reached by
increasing the system size or changing the detuning. At this instability pairs of exciton states
either side of the Fermi edge begin to develop a polarization. The generalization to a Fermi
distribution in the thermodynamic limit is clear: if the distribution has a sharp enough step,
i.e. the temperature is low enough, there can be an instability.

5. Exact solutions

In the case gi = g the model we have considered is exactly solvable, and its solution is
equivalent to that of the BCS model [36]. The linear stability analysis above can be extended
by linking it to the exact solutions through the concept of the Lax vector. In our notation the
Lax vector �L(u) for the generalized Dicke model with gi = g is [36]

�̃L(u) = g2

N
�L(u) =

( 2g Re (ψ)/
√

N
−2g Im (ψ)/

√
N

2u − ωc

)
+ g2

N

∑

i

�σi

2u − Ei
. (7)

As discussed in [39], the character of the dynamics is connected to the number of isolated

branch cuts of the conserved function
√

�L2(u). For a single cut the long-time dynamics has
a constant order parameter obeying (4), while for two cuts one obtains the oscillating gap
solution [38]. The particular parameters within each class of solution, such as order parameters
and the locking frequencies, depend on the initial conditions.

For incoherent initial conditions �̃L(�u) = �kLz(u) + �Lxy(u) lies almost parallel to �k.
Comparing (7) with (6) we see that the zeroes of Lz(u) and the eigenfrequencies of the linear
stability analysis are related as 2u = λ. Thus for the stable case in the left panel of figure 3 the
zeros of Lz(u) lie along the real axis, while in the unstable cases shown there are two complex
conjugate roots off the axis. All these roots lead to doubly degenerate roots of L2

z (u), which
are then split by the perturbation �Lxy . Thus the unstable states we consider have two isolated
branch cuts, and thus correspond to the oscillating gap solution.

6. Damping

We have discussed two dynamical mechanisms for creating coherence in the undamped
Dicke model: an instability of the polariton-like modes which occurs from inverted initial
states, and an instability at the Fermi edge which occurs from a low-temperature Fermi
distribution. However, since the polariton condensate is the thermal equilibrium state then at
low enough temperatures the mechanisms which establish thermal equilibrium, i.e. dissipation
and scattering, must somehow generate coherence.

A simple phenomenological way to extend the Dicke model to include dissipation is to add
a term −γ �σi × (�σi × �Bi) to the right of (3b). By construction such a term tends to align each
spin with its effective field �Bi . However, the effective field �Bi depends on the choice of rest
frame, i.e. the zero of energy. In the equilibrium case the spins align with their effective fields
in the rest frame of the chemical potential. Thus we see that with the damping term implicitly
introduces a chemical potential, and is associated with equilibration with an exciton bath.

In the right panel of figure 4 we illustrate the approach to an equilibrium condensate under
phenomenological damped dynamics. The initial state here has spins randomly oriented in
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the southern hemisphere of the Bloch sphere, and does not develop coherence without the
damping term. The damping term acts to align the phases of the exitons and generate a coherent
state. The final locking frequency of the condensate for these parameters is approximately the
equilibrium chemical potential μpol which gives the steady-state value of L; it comes closer
still in simulations with smaller damping terms. μpol is not in general identical to the chemical
potential μex implied by the choice of rest frame because the former is coupled to both excitons
and photons and the latter only to excitons.

7. Conclusions and outlook

In a polariton condensation experiment a microcavity is pumped at high energies, while
with sufficiently strong pumping coherent polaritons are observed at low energies. A first
approximation to this situation treats the pumping as a high-energy exciton reservoir which
randomly populates the low-energy excitons independently of their energy. Within this
approximation we can suggest several scenarios, differentiated by the relative timescales for
thermalization, exciton decay and photon decay, which would lead to coherent photons.

If thermalization and exciton decay are negligible we expect a scenario which might be
described as a ‘polariton laser’. The reservoir will build up the inversion until the superradiance
threshold is exceeded, and the dynamical instability serves to create a coherent photon field.
This then opens a decay channel allowing the excitation L to decay through the photons, which
for a large reservoir is expected to result in a stationary value of L produced by competition
between pumping and damping.

If thermalization occurs before the excitons decay, and to a low enough temperature, we
could have an analogous scenario but with the coherence developing before the superradiance
threshold. Conceptually the coherence could develop either through the creation of a Fermi
edge and the resulting dynamical instability or directly through dissipation, but in practice
these are intimately related.

In conclusion, we have illustrated both dissipative and non-dissipative mechanisms which
generate coherence from incoherent initial states in Dicke-type models. These include
polaritonic and pairing instabilities, which we have seen generating solutions with both
oscillating and static ordering, and a phenomenological dissipation mechanism which generates
the equilibrium condensate solution. The non-dissipative mechanisms only lead to coherent
solutions from specific initial conditions. Within the classes of initial conditions we have
considered it appears from our simulations that either inversion, a Fermi edge, or dissipation
are needed to generate coherence.
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